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ABSTRACT

The Ligh duty factor accelerator at CEBAF will provide the possibility to con-
duct high statistics single pion electroproduction experiments over a large Q2 and
W range. One may take advantage of the large acceptance of the CLAS detector
to undertake experiments, the data of which can be used to perform a model and
energy-independent partial wave analysis.



Introduction

‘The measurement of pion electroproduction in the nucleon resonance region
provides information on the electromagnetic transition amplitudes of the nucleon.
To obtain this information several high statistic experiments are planned with the
CLAS detector at CEBAF(!. The CLAS detectorisa magnetic multi-gap spectrom-
eter based on a large iron-free toroid with six superconducting coils. The particle
detection system consists of drift chambers to determine the tracks of charged par-
ticles, scintillation counters for the trigger and for time-of-flight, and Cerenkov and
shower counters to identify electrons and detect photons. The expected momentum
resolution is 0.2% (sigma) for momenta up to 4 GeV/c. The detector should be
able to operate at a maximum luminosity of 10%4e¢m~2sec1,

Previous measurements(? of the ple, ¢'p)x° and p(e, ¢’7*)n reactions have been
limited by low statistical precision, particularly in the high invariant mass W and
Q2 region, and by the limited geometrical acceptance. In addition, these measure-
ments covered a small angular range in the azimuthal angle ¢ and polar angie 4
in the hadronic center of mass. Due to these limitations, phenomenological fitting
procedures have been used to obtain information on transition amplitudes (yVN*
vertex). The analyses were made in terms of a model in which the amplitude con-
sisted of three separate contributions: (1) the Born terms, (2) resonances described
by the Breit-Wigner formula for which the positions and widths were taken from
pion-nucleon scattering data, but whose amplitudes were adjustable parameters,
and (3) additional nonresonant background terms. This energy dependent analysis
generally finds only those resonances which have been build into the parametriza-
tion. Uncertainties in the basic resonance parameters (masses and widths) and any
error in the analysis of pion-nucleon scattering can propagate into the electropro-
duction analysis. There is a significant difference between assuming a resonance is
electroproduced in an energy-dependent analysis and discovering it in an energy-
independent analysis. The properties, and occasionally even the detection, of reso-
nances in non-leading partial waves depend on the details of the paramatrization.
For example, the choice of Breit-Wigner phases (interference) can eliminate physical
solutions.

This paper discusses the general procedurel® to obtain differential cross sections
and to disentangle the various resonant partial waves. As a specific example, the
events are corrected for configuration-dependent ineficiencies and acceptance losses
in the CLAS detector. We show that the CLAS detector has suficient coverage for
the partial wave analysis. In section I the method of data analysis for exclusive
reactions is described. In section II we demonstrate the feasibility of the proposed
method using Monte Carlo simulation.



I. Method of Analysis

1.1 Correction for detection inefficiencies

A fraction of produced events that would have been accepted by the geometry of
the CLAS detector is not observed because of various detection inefficiencies. These
inefficiencies depend on event geometry and kinematics and may be corrected for
event by event. The correction is usually performed by introducing for every event
¢ an individual weight w; which is calculated as a product of all weight factors w‘{.“)
arising from inefficiencies of type . Here are a few examples:

1) Decaying pions. Events with secondary pions that decayed along their path
through the drift chambers may fail a reconstruction. This loss may be ac-
counted for by the weight:

m
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where Ly is that part of the trajectory along which a decay will produce a
reconstruction program failure, py is the momentum of the pion, and ¢r =
780 cm.

2) Secondary interactions. The weight w(™) due to secondary particle interac-
tions in the drift chamber material can be calculated from the path length of
the secondaries (that part of the trajectory which will produce a reconstruc-
tion program failure) and their total cross sections.

3) Cerenkov and shower counter ineficiencies depend also on the event geometry
and kinematics, and therefore may influence the shape of the differential cross
section.

4) Trigger ineficiencies, and so on.

1.2 General procedure to obtain differential cross sections

The kinematics of an event can be described completely by a set of independent
kinematical variables zx which are invariant under event rotation or translation
in the lab frame. The differential production cross section may be defined as an
intensity distribution in these variables: Ip,.q4(zx). At fixed beam energy we chose
as kinematical variables for the reaction

e+p—oe+N - +N+r (1)

the four quantities W, Q3,8,p, where W is the N* invariant mass, Q? the squared
four momentum transfer between ¢ and ¢/, and where 4,0 define the = direction
in the hadronic center of mass. The angle 4 is the angle between the decay pion
momentum and the direction of virtual photon. The angle ¢ is the azimuthal



angle of the pion relative to the electron scattering plane {e,e’). To specify the
configuration of an event completely, one needs in addition to zx a set of laboratory
coordinates zy giving its position and orientation in the laboratory. Thus the
distribution of event configurations in the laboratory is described by

Lroa(Zx, TL) = Iproa(zx) P(zL) (2)

where P(z;) is the spatial distribution of produced events, normalized to unity.
Only part of the distribution I} ,(zk,z.) is accepted by the geometry of the de-
tector: we call it the “accepted” distribution I),.(zx,zr). Between Ihoq and I,
one has the relation

Ir:cc(:K= zL) = A'(:EK, xL)I;:rod(szi zr) (3)

where the acceptance propability A'(zg,zr)} takes the values 1 or 0 depending
on whether the event (zg,zr) lies inside the geometry of the apparatus or not.
Integrating eq.(3) over z, one obtains with eq.(2)

laee(ax) = [ Foelansa)dor = A2x) oalax) (@)
where the acceptance function A(zk) is defined as
Alzg) = fA'(:cK,zL)P(zL)dzL (5)

Owing to the configuration-dependent detection inefficiencies discussed in section
L1, I]..(zx,zL) is not identical to the distribution of actually observed events
obe (ZK»TL) but differs by weight factor w(zx,zr)

Tnce(zr,21) = w(zk, L) Ip, (2K, 21) (6)

In practice, [ ec(zx) is obtained from I!, (zx,zr) by attaching a weight w; =
w[a:g?,zg)] to each individual event 1, as already mentioned in section L1.

Starting from the “accepted” distribution Isec(zx), which is identical to the
weighted observed distribution, relation (4) will give directly the distribution of
produced events in the domain of variables zx, where A(zx) is greater then zero.
In order to obtain [y,.q4(Zx) 2lso in the region where the acceptance is zero, one has
to parametrize I ,4(Zx) and to determine the parameters in the observed domain
of variables.

The acceptance function A(zg) as defined by relation (5) may be obtained by
a Monte-Carlo calculation. For fixed W and Q? values, events are generated at
random in the variables cosf, ¢ and transformed into the lab systemn according to
the distribution P(zz), which can include effects of the measured beam distribution
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in the target. The acceptance A{zg) is then simply that fraction of all events
generated with zg which lies within the accepted geometry region as defined by
the drift chambers and the arrangement of Cerenkov and trigger counters. To avoid
edge effects, the acceptance windows introduced for generated as well as for observed
events should be chosen somewhat smaller then those imposed by the detector
geometry. For each rather narrow intervals AW AQ? the average acceptance has
to be determined in each AQ bin, for example: AN = AcosfA¢ = (%)(E), by
generating at least 144,000 events (100 events/bin).

1.3 Fits to the pr angular distribution

Due to parity conservation in the production process (1), the most general pr
angular distribution with {cosf, ¢) = 1 defined in the center of mass reference frame
where the y-axis is perpendicular to the electron scattering plane and z-axis is along
the virtual photon direction, can be written in terms of spherical harmonics YM ()
as follows:

Leoa(W,@%,0) = Dt} Re¥}(0) (7)
LM>0

Here the real parameters t‘}f‘ are functions of W and Q3. Since the fits to the pr
angular distribution are carried out in rather narrow intervals AW AQ?, we consider
the tj‘-f as constants within a W, Q? bin and omit the variables W and Q? from the
arguments of I.oq. The distribution Ip,,q¢({]) is assumed to be normalized to the
number of produced events Np,o4 in AW AQY

[ Breal @480 = Ny = V278 )
The t‘}f are related to the often-used normalized spherical harmonic moments <

ReYM >:
MM
A

< ReyM >=-1_ [ .(Q)Re¥M(@)an = (9)
L N, pr L
prod

Nerod
where e‘r =1for M =0 and e‘}f = -2l- for M # 0. Throughout the rest of this
paper we will simply write Yf‘ as shorthand for ReYLM . Furthermore, for simpler
notation in subsequent formulae, we will also compress L, M into a single index A,
with the convention that A = 0 corresponds to the case L =0, M = 0.

Inserting eq.(7) into eq.(4) we obtain the basic relation for all angular distribu-
tion fits:

A-.-

Tee(N1) = A(D) D taYa(0) (10)
A=0

In the following subsections, two independent fit methods (x? method and method
of moments) will be described which can be employed to determine the parameters
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of the pr angular distribution. From the x? or moment method discussed below,
we can obtain 4() for a considered W, Q? interval by averaging the acceptance
functions, calculated for fixed W, Q2 values, according to the distribution of observed
events in that interval.

1.3.1 x° method

The procedure consists of fitting the accepted distribution I as defined by
eq.(10) to the weighted observed event distribution in a grid of cosd, ¢ bins of equal
size A(). Defining wy as the total weight of observed events in bin k {wy = 3, w;
as already discussed in section 1) and w; P as the expected total weight in the same
bin, the x? to be minimized can be written as

X = Z[wk_;.ui__ (11)

with w;zp = (AQ/4m)A(l) ZA tAYa (O}
In the fits ¥3({2) is evaluated at the bin center whereas for A({3;) the average
acceptance in the bin is used. The squared variance of the expected total weight

wg'? can be shown to be

<wi>
1o 2k 2 (12)

oL =
k < We >

where < wy > is the mean event weight and < wz > is the mean squared weight in
bin k. In case, our weights depend very weakly on cosd, ¢, constant values < w >
and < w? > may be evaluated from all events included in the fit, and thus can
be used for all bins, The same bin size A{l should be chosen as in the acceptance
calculation. Bins with A(0) < A()min should be excluded from the fit.

The x? minimization is achieved by solving the system of equations § x2/8ty =0
for t, with standard iterative procedures. The error matrix E(t,) of the fitted ¢, is
obtained from the relation
1 é"a'x!

-1 _

(13)

1.3.2 Linear algebra method (method of moments)
Multiplying eq.(10) with Yy/(2) and integrating over {1 yields
[ fetytuan = T { [ et s )an e (1)
A :
For easier notation we define the experimental moments

by =/Imndn (15)
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and the acceptance correlations
Ay = / Y AY, dD) (16)

Thus eq.{(14) can be written in simpler form:

by = ZA,\A.t,\ (17)
A

For a set of different X, relation (17) defines a system of linear equations which
can be solved for the ¢, as soon as one employs as many equations as there are
ty admitted. Using more equations than unknows yields an over-determination
allowing for a real fit which will reduce the errors in t,. This fit is achieved by
minimizing

x* =Y du[B(6) (18)
Wb

where d, = 5, Auats — by, and where E(b) is the error matrix of the experimental
moments b,. In eq.(18) we have neglected possible errors in the acceptance cor-
relations A, which in principle can be calculated to any required precision. The
minimization of the x? defined in eq.(18) is still a linear problem which is solved by
standard methods of matrix algebra.

In practice the b), as defined by eq.(15), are obtained by summing over observed

events:
Noic

by = Z w.-Y).(ﬂ.-) (19}
i=l

where w; is the weight of event ¢ and N, the number of observed events included
in the fit. Similarly, the acceptance correlations are calculated by summation over
acceptance bins in the Monte-Carlo calculations:

Niin
Y niYa () Ya(f) (20)

=1

= Nyen

where n, is the number of accepted events in each of the AcosfA¢ bin, Ngen the
number of generated events in the Monte-Carlo calculation, and Y3 (Q;) the val-
ues of the spherical harmonics in the center of the bin. The error matrix of the

experimental moments b, is

Naie
E(b)uw = D w}Yu(0:) YV () (21)

=1

From E(b) and the acceptance correlation matrix 4, one obtains the error matrix
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E(t) of the fitted expansion coefficients ¢{y. In matrix notation we have

E(t) = {ATE®) ™ 47 (22)

I.4 Abhsolute cross section

The fitted distribution of produced events Ip,4(zx) as defined in section 1.3
is corrected only for configuration-dependent and acceptance losses. In order to
obtain an absolute cross section one has to consider in addition the luminosity and
a number of losses which are independent of the event kinematics and geometry,
and can therefore be accounted for by applying a constant global weight factor wy
t0 Jprod(Tx). For example:

1) Luminosity,

2} Reconstruction losses (drift chamber inefficiencies, wrong left-right ambiguity
solution,...),

3) Loss of events due to missing mass cut,

4) Losses due to electronics inefficiency (losses of trigger due to dead time selec-
tion,...), and so on.
Thus, we find that one produced event corresponds to a cross section of n.nn
nanobarn. From this value and the number of produced events in the interval
AW AQ*AQD one determines the differential cross sections for reaction (1).

II. Monte Carlo Simulation

II.1 Event Simulation

We have generated 1.6 million events of the reaction p(e,e'p)7® in the mass W
range from 1.1 to 1.7 GeV at the fixed Q% = 2.0 GeV?. The mass distribution
consists of five resonances (Breit-Wigner forms added incoherently): P33(1232),
Py1(1440), D;3(1520), 511(1535) and F15(1680) taken with the following ratios 40
: 15: 15 : 15 : 15. For each resonance, the center of mass angular distribution
with definite angular momentum !, was generated in terms of spherical harmonics
Y™ (cosf, ) with m = O (uniform distribution). However, the additional ©-
dependence of the cross section o

+ €2

¢ = o + €0, + €oprcos2e + OTLCOSY,

has been taken into account. The Born terms and additional background were not
included in this simulation.



For the purpose of the present study, both the scattered electron and proton
had to be detectable in the trigger scintilation counters. This requirement provides
very good momentum vector measurements for both particles. Additionally, we
required that the outgoing electron is within the acceptance of the Cerenkov and
shower counters. As a result, only a fraction of generated events are detectable in
terms of experimental trigger requirement. In Fig. 1 we show the mass distribution
of the generated (histogram) and accepted (crosses with error bars) events, Only
the accepted events (henceforth called Nobe) by the CLAS detector will be used
in the following analysis. In the following sections we will discuss the procedure
to disentangle the various partial waves in the presence of configuration-dependent
inefficiencies like acceptance losses in the CLAS detector.

120000 ~————"——————— e
f o Q% = 2.0 GeV? P(1232) 40%
100000 | P(1440) 15%
| D(1520) 15%
. S(1535) 15%
& 80000 |- F(1680) 15%
@
>
' 60000
o
<
3 40000
e
Qo
>
& [
20000 }
o’...l.. ot I.AA.IA...IA. .
1.1 12 1.3 1.4 15 1.8 1.7

¥ (GeV)
Fig.1. Invariant mass distribution of the generated Nprod (histogram) and accepted
Nobs (crosses with error bars) events for the cross section o.

I1.2 Calculation of Acceptance

The average acceptance A(AQ?, AW, Acosd, Ap) has been obtained by 2
Monte-Carlo calculation. For fixed values of Q% = 2 GeV? and W in the range
from 1.1 to 1.7 GeV, events were generated at random in the variables cosd, v and
transformed into the lab system with random rotation of the electron scattering
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plane around the beam direction. The routines of FASTMC!4 have been used to
check if the scattered electron and final proton lie within the accepted geometry
regions of the CLAS detector. Thus, for each bin AW = 20 MeV, the average
acceptance A has been determined in each bin of size AcosfAp = (Z)(£), by
generating 288,000 events (200 events/bin).

I11.3 Fits to the pr® angular distribution

The angular distribution of the final hadron () is used to perform a model
independent partial wave analysis in each AQ?AW bin separately.

The procedure consists of fitting the observed event distribution Ny, (accepted
by the CLAS) to the expected distribution in a grid of {cosd, ) bins of equal size
AN. Defining wy = Ny, as a total weight of observed events in bin k and w;* as
the expected total weight in the same bin, the x? to be minimized can be written

as

We — W
Xg = Z[ c:pk ]2
k=1
with
21“.-
wi™® = (AN/4r) A(Qe) Z {t:Y2(0%) + 22 YA (O ) cos2p0 + r Y3 (k) cose}
A=0

where Imgz = 3 is the cut-off in the angular momentum (up to F-wave).

In the fits, Y3{f1;) is evaluated at the bin center whereas for A({l;) the average
acceptance in the bin is used. Bins with A(f2;) < 0.02 have been excluded from the
fit (for W > 1.5 GeV we found that only about 8% bins have the average acceptance
A(fl;) < 0.02). There are thus 21 parameters (ta,pa,72) to be determined from the
fit, in each AQ?*AW bin.

I1.4 Discussion of the results

The mass dependence of pr® angular distribution moments ti’f , pf’ and r‘}f‘
(Lmaz = 8 and M = 0), obtained from the fit as described above, are shown in
Figs. 2,3 and 4. The moments tJ, p and r] are the invariant mass spectra for o,
orr and orr, correspondingly. For comparison, we also show the mass distribution of
generated and accepted events. From this comparison one observes good agreement.
All moments with odd L-values are consistent with zero, since in our model the
Breit- Wigner forms were added incoherently. Generally, from the moments with odd
L, one can learn about the interference between odd and even angular momentum
! states. The moments with M > 0 (not included in our simulation} will show the
contribution the states with angular momentum projection m different than zero.
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The moments of angular distribution can be expressed in terms of the spin
density matrix elements p!42,... The relationship between the spherical harmonics

moments t] {or p,r%) and the intensities of partial waves S, P, D and F ) as follows:

1§ = o33 + o6 + 238 + 033 = |SI* + |PI* + | DI + |F}?

t9=0

tE = 0.894p3} + 0.639022 + 0.596033 = 0.894|P|? + 0.639|Df? + 0.596| F|*
0 =0

t9 = 0.857p23 + 0.545p33 = 0.857|D|? + 0.545|F|?

t2=0

t9 = 0.840p% = 0.840F|?

where the explicit values are the Clebsch-Gordon coefficients.

Using the above relationships one can disentangle various partial waves. For
example, in Fig. 5 we show the mass dependance of the partial waves (crosses)
derived from the t9 moments. For comparison we also show the generated mass
distributions for the corresponding partial waves.

Having written down the relations between the moments and helicity amplitudes
(will be discussed in a future paper), one may hope to find a unique solution for
amplitudes and their W and Q? dependance.

Summary

It has been demonstrated that individual partial waves can be extracted from
high statistics pion electroproduction data using the CLAS detector. The large ac-
ceptance of the CLAS spectrometer is a crucial factor for performing the proposed
analysis. Such analysis is a necessary first step toward understanding electropro-

duced nucleon resonances.
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